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Abstract 

Artificial grammar learning (AGL) has become an important tool used to understand 

aspects of human language learning and whether the abilities underlying learning may 

be unique to humans or found in other species. Successful learning is typically assumed 

when human or animal participants are able to distinguish stimuli generated by the 

grammar from those that are not at a level better than chance. However, the question 

remains as to what subjects actually learn in these experiments. Previous studies of 

AGL have frequently introduced multiple potential contributors to performance in the 

training and testing stimuli, but meta-analysis techniques now enable us to consider 

these multiple information sources for their contribution to learning – enabling intended 

and unintended structures to be assessed simultaneously. We present a blueprint for 

meta-analysis approaches to appraise the effect of learning in human and other animal 

studies for a series of artificial grammar learning experiments, focusing on studies that 

examine auditory and visual modalities. We identify a series of variables that differ 

across these studies, focusing on both structural and surface properties of the grammar, 

and characteristics of training and test regimes, and provide a first step in assessing the 

relative contribution of these design features of artificial grammars as well as species 

specific effects for learning. 
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Introduction 

  Artificial grammar learning (AGL) studies present learners with sequences of 

stimuli that inhere particular structural properties (Miller, 1958) of differing complexity 

(e.g., Reber, 1967), and then test learners on their ability to respond to sequences that 

incorporate aspects of this structure. Such an approach has been a very powerful method 

enabling investigations within a species into the possibilities and constraints on 

structural learning, such as distinctions between phrase-structure grammars or finite 

state grammars (e.g., Bahlmann, Schubotz, & Friederici, 2008), or the extent to which 

adjacent or non-adjacent dependencies in sequences are available to the learner (e.g., 

Conway et al., 2010; Gomez & Gerken, 1999; Jamieson & Mewhort, 2005; Lai & 

Poletiek, 2011; Vuong, Meier & Christiansen, 2016). The paradigm is also of great 

potential use across species, and has been extensively used to address questions about 

what structures are learnable by which species, and under what conditions (e.g., Abe & 

Watanabe, 2011; Chen et al., 2015; Fitch & Hauser, 2004; Saffran et al., 2008).	

There has already been substantial progress made in addressing these questions, 

resulting in an intensive array of studies of learning in birds (e.g., Abe & Watanabe, 

2011; Chen & ten Cate, 2015; Gentner et al., 2006; Spierings et al., 2015, 2017), non-

human primates (e.g., Endress et al., 2010; Heimbauer et al., 2018; Wilson, Smith, & 

Petkov, 2015), as well as human children and adults (e.g., Frost & Monaghan, 2017; 

Gomez & Gerken, 1999; Saffran et al., 2008), addressing acquisition of multiple 

grammatical structures across these species. The other papers in this special issue 

provides a host of further examples of the paradigm in use.	

However, testing different structures and different species raises substantial 

methodological problems when it comes to direct comparisons between grammars and 

between species. Potential confounds both within and across studies have caused 
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substantial concern in the past in terms of the validity of conclusions being drawn from 

studies (e.g., Beckers et al., 2012, 2017; de Vries et al., 2008; Perruchet & Pacteau, 

1990; Perruchet et al., 2004), such as determining exactly what aspect of the structure 

is being responded to – whether that be the actual structures themselves, or some other 

feature of the stimuli (see, e.g., Knowlton & Squires, 1996). However, by using current 

meta-analysis techniques, the presence of these potential confounds can actually 

provide valuable opportunities for teasing apart some of the multiple factors that may 

contribute to learning. Thus, the pattern of such confounds across studies provides a 

backdrop against which the contribution of specific experimental design decisions can 

be assessed in terms of their effect on participant learning. Critically, meta-analysis 

permits researchers to quantify the effects of different kinds of stimuli within a species, 

but also differences across species in how they may respond to different grammatical 

structures. In the present study, we present an analysis of a subset of AGL studies, 

providing a framework that more comprehensive analyses can follow.	

In cross-species comparisons, a key topic of interest is to determine which 

grammatical structures are potentially learnable by distinct species (Fitch & Friederici, 

2018; Ghirlanda et al., 2017). The prospect of such discoveries has broad repercussions 

for the evolution of communicative systems, and the human specificity of language 

structure. The stakes are thus high. As one influential example, Fitch and Hauser (2004) 

conducted a study that required human adults and cotton-top tamarins to distinguish 

between strings generated by a phrase-structure and a finite-state grammar. Only the 

humans were able to make this distinction when trained on strings from the phrase-

structure grammar. Subsequent research, however, has revealed several confounds in 

this study, suggesting that the humans may have relied on other sources of information 
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to make their responses instead of the intended structural information (e.g. de Vries et 

al., 2008; Perrruchet & Rey, 2005).	

An ideal, perfectly-controlled methodological study would isolate a particular 

grammatical structure and test learning of that particular structure without influence 

from other properties of the stimulus. However, the complexity of language structure 

and the practical challenges of training and testing different species on language-like 

structures introduces variation into the actual tasks being conducted. Ensuring that only 

one particular aspect of language structure is tested, and tested in the same way across 

studies involving different species, remains a substantial, potentially insoluble, 

challenge. 

In a recent small-scale review of cross-species studies of artificial grammar 

learning, Beckers et al. (2017) identified several characteristics that could have biased 

learning toward accepting the grammatical structure being tested without necessarily 

indicating learning of the structure. These included the extent to which the test sequence 

had previously occurred in the same form during exposure to the training sequences 

(either wholly or in part), whether the test sequence shared the same onset as the training 

sequences, and whether the test and training sequences were cross-correlated even if 

they did not contain exactly the same sequences or subsequences. Thus, in a study 

containing one or more of these specific properties, it would be impossible to 

conclusively demonstrate that the grammatical rule was acquired by the learner. Such 

questions have been raised for almost as long as artificial grammar learning studies 

have been conducted – the extent to which learning is of particular grammatical 

structures or instead responding to lower-level fragments in the sequences (cf. 

Knowlton & Squire, 1996; Perruchet & Pacteau, 1990—see Frost, Armstrong, 

Siegelman & Christiansen, 2015, for a review). 
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Artificial grammars also differ on fundamental structural properties. Some AGL 

studies contain dependencies between adjacent stimuli, whereas others contain 

dependencies between non-adjacent elements in the stimuli. Furthermore, artificial 

grammars may differ in terms of the number of distinct stimulus elements that 

sequences contain, and the number of different categories to which these stimulus 

elements belong. An artificial grammar with a larger versus a smaller vocabulary, or a 

larger versus smaller set of grammatical categories, may affect learning distinctly. 

Learning studies can also vary in terms of the modality of the stimuli – whether they 

are auditory or visual (Heimbauer et al., 2018). For example, whilst cotton-top tamarins 

are often trained on auditory (e.g. human non-words, monkey calls; Neiworth et al., 

2017) and visual materials (e.g. structured visuospatial sequences; Locurto, Fox, & 

Mazzella, 2015), zebra finches only receive auditory materials consisting of 

manipulations of species-specific birdsong (e.g. Chen and ten Cate, 2015; van 

Heijningen et al., 2009). Modality is known to have distinctive effects on learning 

sequence structure (for reviews, see Frost et al., 2015; Milne, Wilson & Christiansen, 

2018), and for these reasons modality is taken as a focus of the literature that we will 

analyse. 

 Artificial grammar learning studies also differ in terms of how training and 

testing is conducted. Studies of complex sequences with non-human primates and birds 

may require substantial training time – several thousand trials over several weeks – 

whereas studies with human adults are typically constrained to short training sessions 

with a constrained set of training trials. Testing also varies in terms of how the effects 

of learning are measured. For instance, in testing human adults and children there is 

frequently a distinction between explicit, reflection-based tasks for adult responses, 

such as alternative forced choice, or go/no-go responses, and implicit, processing-based 
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tasks such as head-turn preferences or looking times. These tasks may tap into different 

mechanisms, with processing-based tasks more effective for assessing processing-

based learning, such as acquisition of grammatical structures (Christiansen, in press; 

Frizelle, O’Neill, & Bishop, 2017; Isbilen et al., 2018).	

As we have summarised, studies of artificial grammar learning may vary along 

several of these dimensions simultaneously. In this paper, we present a blueprint for 

how a meta-analysis approach could proceed to quantify how various design features 

of AGL studies might influence performance. We analyse a subset of AGL studies that 

have focused on presenting stimuli in either auditory or visual modalities, as reflected 

in the key words used within these articles. As we focus only on a subset of AGL 

studies, the conclusions drawn within the analysis may not generalise to the wider 

literature. The primary aim of our study is thus to provide a meta-analytic framework 

that a more comprehensive study may adopt. We show how meta-analytical methods 

enable us to measure the relative contributions of multiple potential confounds – 

reconsidered here as moderators – in influencing the size of the observed effects. This 

means that what was once considered a confound can actually be reinterpreted as 

providing a valuable and interesting source of data towards determining the limits and 

constraints on learning within and across species.  	

 

Method 

Literature Search 

We conducted the literature search and meta-analysis in accordance with the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines (Moher, Liberati, Tetzlaff, & Altman, 2009), pre-registering the encoding 

and analysis to be conducted (https://aspredicted.org/wf2uk.pdf). The literature search 
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was conducted on the SCOPUS database (Scopus, 2019) on articles published up to 

March 2019. In order to focus our literature review, we searched for studies that 

considered explicitly the modality of presentation in artificial grammar learning. We 

therefore conducted two searches of keywords appearing in titles, keywords, and 

abstracts of articles. In the first, we searched the keywords “artificial grammar learning” 

and “vision” OR “visual”. In the second, we used the keywords “artificial grammar 

learning” and “auditory” or “audio” or “audiovisual”. The results were then merged 

into a master list, and submitted to study selection criteria. 

The search we performed avoided bias in selecting publications for analysis, in 

accordance with PRISMA guidelines, but it is important to note that the results of the 

search were not comprehensive in including all papers that conducted AGL studies with 

auditory or visual stimuli. The literature search for instance failed to include several 

influential artificial grammar learning studies (e.g., Gentner et al., 2006; Hauser & 

Fitch, 2004; Reber, 1967; Saffran et al., 2001, 2008). Our approach therefore outlines 

a blueprint for conducting meta-analyses of potential design differences in AGL 

research, rather than to provide a final, comprehensive answer as to the size of effects 

of learning in AGL studies. 

 

Study selection 

The literature search resulted in 91 records. Of these, 11 were duplicates. Of the 

80 articles remaining, 8 were review articles, 3 presented computational modelling and 

no behavioural data, 1 study reported neuroimaging data of primates with no 

behavioural data, and 2 reported a case study on an aphasic population with no control 

group. These articles were removed, and the remaining 66 articles contained 78 studies 

involving 3559 subjects (this includes subjects tested more than once in the same article 
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– see Results section for how the analysis took into account multiple studies within 

articles). Figure 1 shows the PRISMA literature search flowchart. The list of studies 

included are reported in the Supplementary Materials. 

 

 

Figure 1. Flowchart of the PRISMA literature search criteria used in the current meta-

analysis. 

 

Data extraction and effect size calculation 

The effect size for each study was initially computed as Cohen’s d, and 

subsequently corrected to Hedge’s g, with the variance of g computed in accordance 

with Borenstein et al. (2009). Formula (1) provides correction factor J, which is 

multiplied with Cohen’s d to provide Hedge’s g (2). The variance of Hedge’s g, Vg, was 

provided by (3), where the variance of Cohen’s d is computed, and corrected by J. 

1 	𝐽 = 1 −
3

4𝑑𝑓 − 1  

2 	𝑔 = 𝐽	×	𝑑 
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3 	𝑉. =
1
𝑛 +

𝑑1

2	×	𝑛 ×	𝐽1 

 

Cohen’s d was derived for each type of dependent variable, the dependent 

variable for each study is shown in the Supplementary Materials. For studies reporting 

the number correct, numbers endorsed or responded to, or go/no-go responses as 

dependent variable, the effect size was computed from the difference to chance 

responding in a one sample test (see Equation 4): 

 

4 	𝑑 = 	
𝑀𝑒𝑎𝑛 − 𝐶ℎ𝑎𝑛𝑐𝑒

𝑆𝐷:;<=;>
 

 

In cases where tests and language structures were similar over different test 

sessions or conditions (e.g. Cope et al., 2017; Goranskaya et al., 2016; Mueller et al., 

2010), we combined the means and SDs from each of the multiple test sessions, and 

computed the one sample difference from chance. The pooled mean was simply 

computed as the arithmetic mean across the sessions, weighted by number of 

participants in the session. For pooled SD, we took the average SD using equation (5),  

where n1 is the number of items in test session 1, n2 is the number of items in test session 

2, etc., and SD1 is the observed standard deviation of the test session 1 response 

accuracy, etc. (see van Witteloostuijn, Boersma, Wijnen, & Rispens, 2017): 

 

5 	𝑆𝐷@ABCD.B = 	
𝑛E − 1 𝑆𝐷E1 + 𝑛1 − 1 𝑆𝐷11 + 𝑛F − 1 𝑆𝐷F1 + (𝑛H − 1)𝑆𝐷H1

𝑛E +	𝑛1 +	𝑛F +	𝑛H − 4
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 Subsequently, we computed d using equation (4), with the pooled mean, 50% 

as chance, divided by the SD Average. In serial reaction time studies, the effect was 

measured as the standardised mean difference in RT between presentations of a trained 

vs. an untrained structure, with SDAverage computed as in (5), which assumes 

conservatively that there is a correlation of 1 between the trained and untrained structure 

responses across participants (a lower correlation would result in a lower SD, so this 

formula provides a conservative upper limit for the effect size). For instance, for 

Kemeny and Nemeth’s (2017) data represented in Figure 3, presenting the mean 

response time (RT) and SEM per testing block. In this case, we pooled the mean RT 

for the grammatical blocks 4 and 6 weighted by the number of participants in the 

session, and computed d as the difference to the mean RT for the ungrammatical block 

5, with SD computed as the SD Average across blocks 4, 5, and 6, using (5). 

For sequence reproduction tasks, the effect size was computed as difference in 

mean accuracy for grammatical sequences and ungrammatical sequences, with SD as 

the SD Average computed using (5). 

In head-turn preference paradigms (e.g. Gomez & Gerken, 1999), effect size 

was the proportion of trials where the participant turned towards the grammatical 

violation sequences over the grammatical sequences, indicating observation of the 

violation. These values were compared to chance and d computed in the same way as 

for response accuracy measures.  

For looking time paradigms (e.g. Milne et al., 2018), the effect size was 

computed as the difference in fixation duration between grammatical and 

ungrammatical sequences, computed using the same approach as that for sequence 

reproduction paradigms. Positive effects were generally computed as longer looking to 

ungrammatical than grammatical sequences (a novelty effect). However, in cases where 
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the interpretation of the authors suggested that longer looking times to grammatical 

stimuli (or preferences in head-turn to grammatical sequences) reflected greater 

learning (i.e., a familiarity effect), we re-signed these effects. 

In studies where means and variance were reported only in figures, we contacted 

authors for data, and utilized the Digitizeit digitizer software (available from: 

http://www.digitizeit.de/) when such data was not available, to extract the means and 

SDs. In cases where graphs displayed the mean and 95% confidence intervals (Hall et 

al., 2018), confidence intervals were converted into SDs according to (6), which 

assumes that the authors had computed the confidence intervals using the t-distribution 

(which is more conservative than assuming confidence intervals based on the Z-

distribution), where tcrit is the critical value of the t-distribution for n-1 degrees of 

freedom at p = .05: 

 

6 	𝑆𝐷 = 	 𝑛×
𝑢𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑖𝑡 − 𝑙𝑜𝑤𝑒𝑟𝑙𝑖𝑚𝑖𝑡

2	×	𝑡𝑐𝑟𝑖𝑡[𝑛 − 1]  

 

Each study was encoded for several features in order to test their influence on 

learning performance. We encoded the animal class and species that was tested, and in 

the case of human studies, distinguished whether the study was on children (<18 years) 

or adults.  

For properties of the AGL structure, we encoded whether the study contained 

at least some repetitions of the stimuli experienced during training in the testing, 

whether the artificial grammar contained adjacent dependencies or did not contain 

adjacent dependencies, and whether the artificial grammar contained non-adjacent 

dependencies or did not contain non-adjacent dependencies.  
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For characteristics of training and testing, we encoded the type of test response 

that was being collected – whether this was a Yes versus No judgment, a go or no-go 

task, a scale judgment, a forced choice test between two or more alternatives, serial 

reaction time, head-turn preference, looking time, sequence production, or frequency 

estimation task.  We subsequently grouped these variables into whether they required 

reflection on the grammatical structure (reflection-based; forced choice tests, yes versus 

no judgement, go/no-go, scale judgement), or more directly tapped into the underlying 

processing of the grammatical structure (processing-based; looking time, head-turn 

preference, serial reaction time, sequence production) (Christiansen, in press). We 

encoded the amount of exposure to the artificial grammar that participants experienced 

in terms of the total number of stimulus tokens from the grammar during exposure 

(training length). 

Importantly, we also encoded a number of surface features of the AGL, 

including whether the stimuli were visual, auditory, or a combination of both visual and 

auditory, in order to determine whether learning varied according to the modality of the 

task. Further, we also encoded the size of the artificial grammar in terms of the size of 

the vocabulary in the grammar (or the number of distinct items), as well as the number 

of different categories in the grammar (e.g., for a phrase-structure grammar with four 

nouns, two verbs, two adjectives, and two determiners, the number of categories is 4 

(noun/verb/adjective/determiner) and the size of the vocabulary is 14. 

 

Results 

Evidence of acquisition of structure from AGL studies 

The overall effect size across the studies, and the extent to which each of the 

encoded study variables predicted differences in effect sizes across the studies, was 
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determined by conducting a random effects meta-analysis of effect sizes, using the R 

package metafor (Viechtbauer, 2010). This approach takes into account inconsistencies 

between the studies analysed, provides an estimate of sampling error, and also permits 

a measurement of the effects of each of the variables in moderating the size of the 

overall behavioural effect (Borenstein, Hedges, Higgins, & Rothstein, 2010; 

Borenstein, Higgins, & Rothstein, 2009). We encoded each experiment in an article and 

each test in an experiment as a separate study, and as these cannot be assumed to result 

in effect sizes independent from one another, we encoded article as a nested multilevel 

variable in the analysis (Konstantopoulos, 2011).  

The model was run using the rma.mv function with the restricted maximum 

likelihood (REML) method. We utilised the t method to generate test statistics and 

confidence intervals. The model was run using the rma.mv function with restricted 

likelihood (REML) method, and the t-adjustment to calculate the model estimates of 

standard errors, p values and confidence intervals. Effect sizes for individual studies 

and the overall average weighted effect sizes are presented in Figure 2. A positive effect 

size indicates greater preference for stimuli conforming to the AGL structure, while a 

negative effect size indicates preference for non-conforming stimuli (except in the case 

of the looking studies, where a positive effect indicates longer looking to violating 

stimuli – as this was the predicted effect of such studies in reflecting AGL acquisition, 

e.g., Gomez & Gerken, 1999). 

The meta-analysis resulted in the average weighted effect size = 1.069, SE = 

.130, 95% CI [.813, 1.326], p < .0001, indicating that overall there was strong evidence 

of learning in AGL studies. 

 

3.2 Publication bias 
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 To determine whether there was publication bias in the sample, we conducted a 

Peters’ test (Peters et al., 2006) on the random multilevel meta-regression model. The 

Peters’ test revealed a significant asymmetrical distribution, t(154) = -2.290, p = .023, 

indicating the presence of publication bias in our sample. The funnel plot (Figure 2) 

displays the standard error (a measure of study precision) against the effect sizes of the 

individual studies. In the absence of publication bias, studies should be symmetrically 

distributed around the average weighted effect size in a funnel shape, with high 

precision studies being closer to the average weighted effect size, and lower precision 

studies symmetrically distributed around the average weighted effect size. The 

distribution indicates that there are more large positive effect sizes for smaller sample 

sizes than would be expected from a standard distribution of studies, suggesting a 

potential publication bias. The size of the effect of AGL acquisition, and the sources of 

heterogeneity of the effects, should thus be considered in light of possible bias in the 

studies published. 
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Figure 2. Funnel plot showing the relationship between the standard error and the effect 

size of the individual studies. Points are colour-coded according to animal class. Black 

points illustrate Human Adult Studies, blue illustrate Non-human mammals studies, red 

are Human Child studies, and green are Bird studies. 

 

3.3 Heterogeneity in effect size variance associated with study variables 

 Cohran’s Q-test for heterogeneity was significant (Q(155) = 1185.657, p < 

.0001), indicating that variance in the data cannot be explained by random measurement 

error, but that different aspects of studies are contributing to the effect size. We thus 

analysed the effects of each of the set of variables we encoded from each of the studies 

as moderators, shown in Table 1. 

 For the effect of animal class (but also distinguishing human adults and human 

children from non-human mammals), there were significant differences on the size of 

  Human Children 
  Non-human 
Mammals 
  Human Adult 
  Birds 
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effect of learning between different species. For human adults, the overall effect size 

was 1.252 (SE = .148, 95% CI [0.958, 1.545], p < .0001). For human children, the 

overall effect size was 0.615 (SE = .231, 95% CI [.101, 1.129], p = .0237). For non-

human mammals, the overall effect size was 0.626 (SE = .172, 95% CI [.221, .1.032], 

p = .008). For birds, the overall effect size was 0.428 (SE = 0.533) (95% CI [-0.653, 

1.509], p = .427). 

 Properties of training and testing of AGL studies were found to produce 

significant differences in effect sizes. Log-transformed number of training trials related 

negatively to effect size, -0.188 (0.054) (95% CI [-0.295, -0.0815], p = .0006). Further, 

repetition of trained items at test resulted in larger effects 1.051 (SE = 0.279, 95% CI 

[0.499, 1.602], p = .0002). 

 Surface level features of the language did not significantly moderate the 

variance of effect sizes (see Table 1), and this included also the modality of stimulus 

delivery. The number of categories, the vocabulary size, and critically, whether the 

stimuli were visual or auditory were not found to affect the overall effect size. 

  For the structural properties of the language, there were moderating effects. 

The presence of repetition of items from training to test positively influenced effect 

sizes, with an overall effect of 1.051 (SE = 0.279) (95% CI [0.499, 1.602], p = .0002).  

 As there were different sized effects of learning for each animal class, and 

possible confounds between study design characteristics and animal class tested, we 

conducted further analyses of moderator variables for human adult, human child, birds, 

and non-human mammals separately. 

 

Table 1. Contributions of each moderating variable to account for variance in effect 

sizes across studies. 
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Moderator  F Df1, Df2 p 

Population     

 Animal Species 2.613 (10, 145) < .0001*** 

 Animal Class 5.811 (3, 152) .0009*** 

 Human vs. Non-human 7.555 (2, 153) .0007*** 

Training and testing     

 Log Training Length 12.149 (1, 154) < .0001*** 

 Stimulus Modality 0.095 (2, 153) .909 

 Test Response 1.624 (10, 145) .105 

 Test Type 3.698 (1, 154) .056 

Surface level properties     

 Categories in Language 0.0001 (1, 154) .992 

 Number of unique vocabulary 

items 

3.021 (1, 154) .084 

Structural Properties     

 Repetition of items 14.162 (1, 154) .0002** 

 Adjacent dependencies 0.238 (1, 154) .627 

 Non-adjacent dependencies 0.118 (1, 154) .608 

 

 

 

3.4 Moderator Analysis of Human Adults 

 There was significant heterogeneity of variance in the effect size in studies 

testing human adults (Q(99) = 707.273, p < .001), so we analysed the effect of each 

moderator (see Table 2 for the significance of each moderator). There was a significant 

effect of the presence of non-adjacent dependencies (effect = 0.582, SE = 0.259, 95% 

Note. F is the statistic for testing whether the moderator accounts for some heterogeneity 
between studies; p is the significance for the F-test *** p < .001, ** p < .01, *p < .05. Note 
that Animal Class distinguishes birds, non-human mammals, human adult, and human child. 
Animal species also distinguishes human adult and human child.  



Running head: ANALYSING MULTIPLE CONTRIBUTORS TO AGL  

	 19	

CI [0.068, 1.096], p = .027), suggesting that adult human participants are overall 

successful in learning non-adjacencies in artificial grammars. 

 

Table 2. Contributions of each moderating variable to account for variance in effect 

sizes in Human Adult studies. 

Moderator  F Df1, Df2 p 

Training and testing     

 Log Training Length 0.415 (1, 98) .521 

 Stimulus Modality 0.306 (2, 97) .737 

 Test Response 0.671 (8, 91) .716 

 Test Type 1.884 (1, 98) .173 

Surface level properties     

 Categories in Language 0.319 (1, 98) .574 

 Number of unique 

vocabulary items 

1.023 (1, 98) .305 

Structural properties     

 Repetition of items 0.036 (1, 98) .851 

 Adjacent dependencies 1.745 (1, 98) .190 

 Non-adjacent dependencies 5.050 (1, 98) .027* 

 

3.5 Moderator Analysis of Human Children 

 There was significant heterogeneity (Q(10) = 49.953, p < .0001), so we further 

analysed the effect of each moderator (see Table 3). In this analysis, the only significant 

moderator was the test response participants made. This analysis indicated that head-

turn preference paradigms produced an overall effect of 1.301 (SE = 0.1663, 95% CI 

[0.772, 1.831], p = .004). Sequence production paradigms, by comparison, produced an 

effect that failed to statistically differ from 0 (effect size = 0.150, SE = 0.144, 95% CI 
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[-0.433, 0.721], p = .395). Finally, binary yes-no judgement tasks produced an overall 

effect of 0.822 (SE = 0.099. 95% CI [0.506, 1.137], p = .004).  

 

Table 3. Contributions of each moderating variable to account for variance in effect 

sizes in human child studies. 

 

 

3.6 Moderator Analysis of Non-human Mammals 

 There was significant heterogeneity (Q(7) = 15.928, p < .026), therefore we 

analysed the effect of each moderator (see Table 4). Non-human mammals only took 

part in studies delivered in the auditory modality, and all of which were processing 

based, included adjacent dependencies, and did not include repetitions at test, and hence 

we did not include a moderator analysis of testing modality, repetition of items, 

Moderator  F Df1, Df2 p 

Training and Testing     

 Log Training Length 0.214 (1, 9) .654 

 Stimulus Modality 3.427 (1, 9) .097 

 Test Response 15.978 (2, 8) .002* 

 Test Type 0.271 (1, 9) .615 

Surface level properties     

 Categories in Language 0.059 (1, 9) .813 

 Number of unique vocabulary 

items 

0.862 (1, 9) .377 

Structural properties     

 Repetition of items 2.503 (1, 9) .148 

 Adjacent dependencies 0.023 (1, 9) .884 

 Non-adjacent dependencies 0.012 (1, 9) .917 
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adjacency, and testing type. No moderator accounted for a significant proportion of 

variance in this dataset. 

 

Table 4. Contributions of each moderating variable to account for variance in effect 

sizes in non-human mammals studies.	

 

 

3.7 Moderator Analysis of Birds Studies 

 There was again significant heterogeneity (Q(36) = 259.498, p < .0001), 

therefore we analysed the effect of each moderator (see Table 5). Birds, however only 

took part in classification-based tasks, and thus, we did not analyse the effect of test 

type. Log training length accounted for a significant portion of the variance, increased 

training resulted in a lower effect size -0.739 (SE = .268, 95% CI [-1.283, -0.195], p = 

.009). Increased vocabulary sizes tended to increase effect sizes (effect size = 0.099, 

SE = 0.038, 95% CI [0.022, 0.177], p = .014). Stimulus modality explained a significant 

portion of variance, with visual stimuli producing larger effects (effect size = 1.993, SE 

= 0.788, 95% CI [0.395, 3.592], p = .016) than auditory stimuli. The response task used 

also accounted for a significant portion of variance of effect sizes, however, the meta-

Moderator  F Df1, Df2 p 

Training and testing     

 Log Training Length 1.121 (1, 6) .331 

 Test Response 1.262 (1, 6) .304 

Surface level properties     

 Categories in Language 0.760 (1, 6) .418 

 Number of unique vocabulary items 0.365 (1, 6) .567 

Structural properties     

 Non-adjacent dependencies 0.111 (1, 6) .750 
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analytic estimate for both 2AFC tasks (effect size = 2.288, SE = .135, 95% CI [-0.488, 

5.065], p = .090) and go/no-go tasks (effect size = -0.042, SE = 0.294, 95% CI [-0.642, 

0.559], p = .889) failed to significantly differ from 0. This reflects the fact that variance 

of effect sizes in birds was large; to properly account for the moderating effect of task 

type on the variance in effect size for bird studies, a larger set of studies for inclusion 

would be helpful. Finally, the repetition of items accounted for a significant portion of 

the variance of effect sizes, whereby repeating items at test resulting in an effect size of 

5.013 (SE = 0.740, 95% CI [3.511, 6.515], p < .0001). This effect is explained by the 

only study including repetitions of whole strings at test (Spierings & ten Cate, 2016) 

produced large effect sizes. 

 

Table 5. Contributions of each moderating variable to account for variance in effect 

sizes in birds studies. 

 

Moderator  F Df1, Df2 p 

Training and testing     

 Log Training Length 7.609 (1, 35) .009** 

 Stimulus Modality 6.407 (1, 35) .016* 

 Test Response 6.407 (1, 35) .016* 

Surface level properties     

 Categories in Language 0.053 (1, 35) .819 

 Number of unique vocabulary 

items 

6.712 (1, 35) .014* 

Structural properties     

 Repetition of items 45.926 (1, 35) < .0001*** 

 Adjacent dependencies 2.462 (1, 35) .126 

 Non-adjacent dependencies 1.661 (1, 35) .206 
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Discussion 

 We presented a focused literature search analysing AGL studies that address the 

modality of stimulus presentation, taking into account the varieties of designs, as well 

as species, that are tested across these studies. This approach provides a blueprint for 

how meta-analysis in AGL studies can assess the influence of multiple moderators on 

learning, providing insight into the conditions under which learning of regularities in 

artificial grammars can be observed. Confounds and differences between studies – both 

intended and unintended (and previously viewed as adding opacity to the field of 

research) – can be considered sources of information for disentangling multiple 

contributors to learning of artificial grammar stimuli, rather than serve only as an 

impediment to comparison between studies. Heterogeneity of design can actually be 

analysed through an estimate of heterogeneity of variance which can then be associated 

with the presence or absence of differences across studies.  

The current analysis was conducted to provide a framework for how future, 

more comprehensive meta-analyses might robustly identify patterns in the artificial 

grammar learning literature. However, our literature search was constrained by a 

restricted set of keywords that selected only papers where AGL and modality of 

presentation were explicitly tagged as features of the study. We know that influential 

studies in the literature were omitted by our approach. Whereas our focus here was to 

avoid bias in selecting the papers for inclusion in our analysis by conducting an 

objective keyword search, this absence of key studies highlights that there are relevant 

papers that are not included in the current analysis, and so the comprehensiveness of 

our search cannot be assumed. Consequently, the precise results of the meta-analysis 

and the moderator analysis should not be taken as the final word on this topic. Instead, 

we have shown how a future analysis, on an even more comprehensive set of studies, 
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may help move the field forward. Such a study will be a considerable undertaking; a 

Scopus search with the keywords “artificial grammar learning” or “statistical learning”, 

for instance, resulted in 6,511 records and still failed to include the landmark studies 

by Fitch and Hauser (2004), Gentner et al. (2006), and Reber (1967), mentioned in the 

Introduction, though the search did succeed in including the key studies by Saffran 

(2001) and Saffran et al. (2008). Finding principled ways to limit the literature search, 

without omitting key articles, presents an additional interesting challenge in this field 

of research. 

This shortcoming raises concerns about terminological specificity in the field of 

artificial grammar learning. If we take Fitch and Hauser’s (2004) study, this paper 

explicitly implements an AGL method, however, it instead describes it as a 

“familiarization/discrimination paradigm” in its abstract. Gentner and colleagues 

(2006) do not describe their method in the abstract, and in text specify it as a go/no-go 

operant conditioning procedure of ABn and AnBn grammars. Similarly, Saffran’s (2001) 

and Saffran et al.’s (2008) methods are variously described as statistical learning, 

grammatical pattern learning, or familiarization-discrimination.  

Cumming (2014) provided a compelling argument for favouring magnitude 

estimation over null hypothesis significance testing in assessing experimental effects. 

A tenet of this approach is to employ meta-analytic thinking throughout the research 

process, including writing, reporting, and publication. The diversity of terms utilised to 

describe related methods makes it difficult to devise a singular, constrained set of search 

terms that would gather them together in a given search. Moving forward, we would 

suggest that using informative, umbrella keywords will ameliorate this issue, 

facilitating meta-analyses, and in Cumming’s (2014) view, support research integrity. 
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In terms of the results of our focused meta-analysis in terms of what can be 

learned across animal classes, the analyses showed that the size of learning effects 

varies according to the species tested, though the evidence of publication bias and the 

potential lack of comprehensiveness in the search mean that interpretations based on 

size of effects must be treated with caution. The overall largest effect was observed for 

studies involving adult humans, but there were also overall significant effects of 

learning associated with child humans, non-human mammals, though not for birds. 

However, there are many differences between studies designed to appraise learning in 

different species, and heterogeneity of the variance within studies addressing each 

species points to ways in which these design differences may have profound effects on 

learning. The analyses of moderator effects within each animal class demonstrated that 

multiple variables were affecting learning, highlighting potential distinctions across 

species.  

The size of the observed effects for human children was affected by the test 

response required, with similar effect sizes for head-turn preference and Yes/No 

judgement tasks. Whilst sequence production tasks did not significantly differ from 0, 

this likely reflects the small number of child studies included in the present analysis. 

For birds, the presence of training items at test produced large effects, perhaps 

unsurprising given the large amount of training they receive. Intriguingly, a greater 

number of training trials related negatively to effect size. This is likely correlated with 

the specific species of bird tested, and thus represents an important variable to focus on 

in a comprehensive meta-analysis. For adult humans, larger effects were produced by 

grammars containing non-adjacent dependencies than sequences without those 

dependencies, which have traditionally been difficult to observe in individual studies 

(e.g., Frost & Monaghan, 2016; Lai & Poletiek, 2011; Perruchet et al., 2004), see 
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Wilson et al. (in press) in this issue for further discussion. The absence of a significant 

effect of adjacent dependencies was unexpected, but highlights the variation that can 

occur in the effect sizes across studies testing these structures. 

Further meta-analytical techniques can help determine the additional sources of 

information that might support such learning, such as use of reflection- versus 

processing-based test measures (Vuong et al., 2016). In order to measure the effect of 

learning on processing, rather than explicit decision-making based on the structures 

experienced by the learner, a task that probes processing is proposed to be more 

effective (Christiansen, in press; Frizelle et al., 2017; Isbilen et al., 2018), however, in 

the present analysis there was no statistically reliable difference between the two. This 

may be a consequence of the comparatively large number of reflection-based effects 

(135) relative to processing-based effects (21) included in this analysis, or of the range 

of grammars that tend to be tested in AGL studies, a large number of studies use Reber-

style (1967) grammars, where explicit testing may produce a similar magnitude of 

effects. Moreover, the effect of reflection-based measures may also have been inflated 

by including the non-human animal data as they are unlikely to engage in the kind of 

conscious reflections often observed in human studies. Finally, the presence of a 

potential publication bias combined with the much longer use of reflection-based 

assessments in AGL studies going more than half a century may further explain this 

pattern.	

A key issue that emerged during our analysis was that individual stimuli within 

a test may contain alternative structures or vary in the presence of surface features. The 

analyses in this paper report effect sizes and features of the stimuli across sets of stimuli, 

which can obscure the individual influence of these features. Making raw data sets 
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publicly available would enable this by-items analysis to reveal the precise contribution 

of multiple variables to learning behaviour (e.g., Beckers et al., 2017). 

The studies included here were selected from an objective literature search on 

SCOPUS, intending to avoid bias in our selection of tests, focusing on studies of AGL 

that describe the modality of the stimuli. Interestingly, except in the case of birds, 

modality was not found to affect the results, but this may also have been affected by 

observed publication bias. Expanding further to a literature search of an even broader 

literature would help to determine more clearly which moderators are affecting 

performance, and which are orthogonal to artificial grammatical learning. There are, 

for instance, other structures that are of key interest to both language acquisition 

research, and cross-species investigations of the limits of grammar learning – such as 

distinctions between phrase structure and finite-state grammars (Fitch & Friederici, 

2012; Fitch & Hauser, 2004), or focused on hierarchical centre-embedded structures 

(Lai & Poletiek, 2011). Debates on the learnability of these structures (e.g., de Vries et 

al., 2008) will be facilitated by a wider survey of the published literature. In our 

blueprint for a meta-analysis approach in this field, we have made an illustrative first 

step toward providing a perspective on what is learned and what is learnable within and 

across species. 	
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